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The flow under discussion represents an idealization of the bath-tub vortex; 
distortions of the free surface, finite sink size, and all rigid boundaries have been 
eliminated from the problem in order to isolate the effect of the non-uniform 
stretching of vortex lines produced by the sink flow. A boundary-layer type of 
approximation is made about the axis, which requires that the meridional 
Reynolds number ( N )  be large, and since the problem is still intractable, an 
expansion is made in powers of K = RZ/N (where R is the swirl Reynolds number), 
which measures the strength of the interaction between the swirl and meridional 
velocity fields. In  the limit of zero K the flow is a modified Burgers vortex whose 
radius decreases to zero at the sink. For non-zero K ,  the interaction is not re- 
stricted to the vortex core, because the presence of the vortex modifies the outer 
irrotational flow, inducing a radial mass flux into the core, whose dependence 
on the axial co-ordinate is calculated to the first order in K. The structure of the 
core is obtained, again to the first order in K ,  from two co-ordinate expansions, 
one near the stagnation point on the axis, and the other near the sink, although 
only the first few terms of the latter can be determined explicitly. It is shown how 
the methods can be extended not only to higher orders in K ,  but also to any other 
narrow viscous vortex in which the vortex lines are stretched non-uniformly 
away from an internal stagnation point. 

1. Introduction 
The problem to be discussed in this paper may be stated as follows. An infinite 

row of equally spaced point sinks, each of strength 4nQ, is situated on the axis 
of an infinite body of viscous, incompressible fluid with uniform circulation 
27rl?, at large radius (figure 1). The fluid withdrawn through the sinks is replaced 
irrotationally at infinity. The condition that the swirl velocity must be zero on 
the axis is violated by a potential vortex, so the flow must be rotational in some 
region surrounding the axis, and steady vortices will ultimately be set up in 
which the radial viscous diffusion of vorticity is balanced by the axial stretching 
of vortex lines produced by the flow into the sinks. We here examine both the 
internal structure of the vortices and their effect on the irrotational outer flow. 
By symmetry, we can restrict our attention to the single vortex in the region 
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0 6 z 6 h, where 2h is the sink spacing and we use cylindrical polar co-ordinates 
( r ,  0, z )  with corresponding velocity components (u, v, w). 

The problem is clearly allied to that of the familiar bath-tub vortex, but many 
complicating factors have been eliminated. These are: (a)  distortion of the free 
surface resulting from reduced pressure near the axis : here the plane x = 0 is the 
equivalent of the free surface; ( b )  the finite size of any real sink; and (c) all rigid 
boundaries. Finite sink size will be unimportant far from the sink as long as the 
dimensions of the sink are small compared with a length-scale characteristic of 
the width of the vortex near the stagnation point 0 (figure 1). Rigid boundaries, 

FIGURE 1. Pictorial statement of the problem. 

however, always have a significant effect on vortex motions (Rott & Lewellen 
1966, chapter v), and their neglect is an idealization which cannot be achieved 
in practice, but which is justifiable here becauseit isolates a hitherto ignored aspect 
of real vortex flows, the non-uniform stretching of vortex lines. The equation 
governing the axial component of vorticity, w ,  in a steady, axisymmetric 
situation, is 

where y is the kinematic viscosity of the fluid. If 21 is a function of r alone, and 
hence (from the continuity equation) awlax is independent of x ,  then it is possible 
for w ,  and therefore v, also to be independent of z. In  that case the only effect of 
the swirl on the meridional flow field (through the other equations of motion) is 
to alter the pressure distribution. Thus only if awjaz, representing the rate of 
stretching of vortex lines, is non-uniform, i.e. if it depends on z, can there be any 
interaction between the swirl velocity field (determined by (1.1)) and the 
meridional flow field. 

In many previous models of viscous vortices the rate of stretching of vortex 
lines is uniform, v depends only on r ,  and there is no interaction (see, for example, 
Donaldson & Sullivan 1960). This is typified by the well-known stagnation-point 
vortex first described by Burgers (1940) in which 

I u = - k r ,  w = 2kz, 
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where k is a constant and 2nr, is a uniform circulation at  large radius. The meri- 
dional velocity field (u, w) is that of irrotational, axisymmetric stagnation point 
flow away from the plane surface z = 0,  and (1.2) satisfies both the full Navier- 
Stokes equations and all boundary conditions on the axis. In  the sink flow con- 
sidered here, however, awlax on the axis (say) is far from uniform (w is zero at 
z = 0 and infinite at  x = h),  and so there must be a significant interaction between 
the sink flow and the swirl. 

There are other studies of viscous vortices in which the stretching of vortex lines 
is non-uniform, but these often take the form of similarity solutions in which 
awlax varies as a given power of z ,  see, for example, Long (1958,1961), or Lewellen 
(1964). The only work known to the author where a general dependence on x 
is permitted is by Lewellen (1962), who makes an expansion for vortices with 
strong swirl (v is an order of magnitude greater than w), and can obtain determi- 
nate solutions only if the stream function is completely known as a function of 
radius at  two axial stations. Direct application of this method in the present 
instance leads to a purely irrotational flow which is singular at all points on the 
axis, and tells us nothing of the viscous vortex structure, even in the case of 
strong swirl. 

Idealized as it is, the problem under discussion is still intractable, and some 
further simplifications must be made. The most obvious is to assume that the 
width of the rotational vortex core (characterized by a length 6, say) is small 
compared with the axial length scale h. Thus we make a boundary-layer type of 
approximation about the axis, and this turns out to require that the Reynolds 
number of the basic sink flow ( N  = &/vh) be large. One might then suppose, by 
anaIogy with first-order boundary-layer theory, that the flow outside the core 
will be the irrotational flow with uniform circulation which would exist in an 
inviscid fluid, and that the limit of this flow, as the outer variable rlh tends to 
zero, must be imposed as the limit of the core flow as the inner variable r/S tends 
to infinity (the matching condition). However, that supposition would conflict 
with known experimental results for vortices with strong swirl, which indicate 
that the irrotational outer flow consists of a uniform radial inflow (ru = constant, 
w = 0) superimposed on the uniform circulation (Long 1958; Turner 1966; 
such an outer flow is often assumed in theoretical models, e.g. by Lewellen 1962, 
1964). The irrotational flow due to a row of point sinks is quite different, since u 
tends to zero at  the axis and w tends to a function of z. We are thus forced to 
conclude that the boundary-layer analogy breaks down and that the presence of 
the vortex has a modifying effect on the outer flow, for which we cannot assume 
a given form, but can only hope that the matching condition will serve to deter- 
mine it. 

Clearly, the outer flow will vary, from the strong swirl limit of uniform radial 
inflow on the one hand, to the undisturbed irrotational sink flow (which would 
exist in the absence of swirl) on the other. It has already been mentioned that 
known methods for the strong swirl limit do not yield a realistic solution, and 
the general problem is still too difficult, so in this paper we consider the limit of 
weak swirl. The method is to assume small perturbations from the irrotational 
no-swirl solution and to expand in powers of a small parameter K (K = I'",/&v 
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and is here referred to as the interaction parameter). Lewellen (1965) also used 
the idea of linearizing about flows with no swirl, but the example he chose was 
pure stagnation point flow, in which the rate of stretching of vortex lines is 
uniform, and which is thus of little interest. The basic irrotational flow in this 
problem is the sink flow given by the Stokes stream function 

and the limit of this as r/h tends to zero (the inner limit of the zero-order outer 

m 2n+ 1 solution) is 

12=o[(2n+ 1)2h2-z2]a' 

Note that as we approach the stagnation point (x/h --f 0), (1.4) becomes the stream 
function for pure stagnation point flow, with k (in 1.2) equal to 

2Q 
M (1.05) - . 3 5 -  1 

h3 n=O (2n + 1)3 h3 

Thus if the vortex in any way resembles a Burgers vortex at the stagnation point, 
which seems likely, the radial length scale is given by (1.2) as 

(1.5) S2 = 2v/k M vh3/Q. 

This radial length scale will form the basis for the non-dimensionalization in the 
next section. 

In $ 3, the solution for the circulation field is examined to the zeroth-order in K ,  
and, to this order, the flow is seen to have the form of a Burgers vortex whose 
radius varies from S at the stagnation point to zero at  the sink. 

The first-order solution is investigated in $4, and it is shown that the outer 
flow is modified by the presence of the vortex, which induces a radial inflow to 
the core near the stagnation point, and a corresponding outflow near the sink. 
The magnitude of this inflow as a function of z is derived explicitly. 

In  $8 5 and 6, the detailed structure of the vortex core is examined, to the first 
order in K ,  by means of two co-ordinate expansions, in powers of x/h and (1 - z/h) 
respectively. The former is completely determinate, and the first few terms, 
giving the radial dependence of the flow variables near the stagnation point, are 
computed. Despite the lack of a mathematical proof of convergence, it is argued 
that these few terms give a reasonable picture of the flow for values of zlh less 
than about 0.4. The second expansion, near the sink, isnot completely determinate, 
because there are no means by which the boundary conditions on x = 0 can be 
incorporated into it. However, the leading terms can be calculated explicitly and 
reveal something of the flow structure near the sink. 

The second-order (K2)  solution is briefly discussed in 5 7, and the first terms in 
the z/h expansion are calculated. The smallness of these terms compared with the 
corresponding terms of the first-order solution is adduced as evidence that the 
small K expansion is a good asymptotic representation of the complete solution. 
Since, in addition, the present methods are suitable for a whole class of vortices, 
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of which ours is but one example, it seems clear that they lead to results which are 
valid in a wide range of circumstances. 

2. Non-dimensional equations and boundary conditions 
The equations of motion for steady axisymmetric flow with swirl, in the chosen 

co-ordinate system ( r ,  8, x ) ,  can be reduced to two in number by eliminating the 
pressure and by expressing the radial and axial velocity components in terms of 
a Stokes stream function $ as follows: 

= (l/r)$p w = -(l/r)$r, (2 .1)  

where the subscript denotes differentiation with respect to the relevant variable. 
The dimensional parameters which govern the problem are the sink strength 
474, the circulation at infinity 2nr,, the sink spacing 2h, and the kinematic 
viscosity v. The obvious axial length scale is h, and the obvious scale for the 
circulation rv is I?,, but the radial length scale and the scale for the stream func- 
tion will differ according to which of the two flow regions, the inner viscous core 
or the outer region of presumably irrotational flow, is being considered. 

(i) T h e  inner region 
Here we non-dimensionalize the equations by means of the following trans- 
formations [ = z /h ,  r] = r2/S2, I? = rV/Fm, $ = $/vh, 

where S is defined by ( 1 4 ,  and $is non-dimensionalized so that the inner solution 
without swirl, (1 .4) ,  has dimensionless form. The velocity components are now 
given in terms of the non-dimensional variables by 

(2 .2)  

rv = r,r, 2vh 
Sa ru = v@[, w = ---@ (2 .3)  

and the two equations of motion become (cf. Lewellen 1962) 

7& r7 - @9) rs = 2Tcp) + sa2rg (2.4) 

4- aY - $[?& $- 7l$&-cg, - rlA)$& - 4r]a$&)q - +a2r/&Ef& (2.5) 

and Krrf = 4712(@&q77 - $q@&p) - 41cr,,, - 2r]@7,,,) 

where a2 = Sa/h2 = vh/Q = 1/N,  

K = r",/&v = R2/N,  
and N ,  R are the radial and tangential Reynolds numbers respectively. (The 
reason for calling K the interaction parameter is clear from (2.5): if K is zero, 
@ is determined by the same equation as in the absence of swirl, but as K increases 
the coupling between the two equations, and hence the interaction between the 
swirl and meridional flow fields, becomes more pronounced.) If we now make the 
boundary-layer approximation (a2 < 1 or N B l), the equations are greatly 
simplified, and become 

(2.6) @& - $7 r, = 27rq, 

and K r r ,  = ~ 7 ~ ~ @ [ $ 7 7 ~ - @ ~ $ ~ ~ q - 4 ~ ~ 7 q - 2 7 ~ 7 7 7 ~ ) -  (2.7) 
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The boundary conditions to be imposed on the inner variables are: 
(a) on x = 0, and on z = h for r > 0, the axial velocity and the tangential stress 

(by symmetry) are zero, i.e. 

( b )  on r = 0, the radial and swirl velocities are zero, and all components of 

7 + 0 (0 6 6 < l), $ - (function of 6)7, r N (function of 5 ) ~ ;  (2.9) 

(G) as r /& tends to infinity, the solution must match the outer flow, i.e. as 

shear stress are zero, i.e. as 

7 +- co (0 6 6 < l ) ,  $, l? N lim (outer solution). (2.10) 
r/h-+0 

Note that when K is zero (no swirl), the inner solution for $ is the unmodified 
inner limit of the irrotational solution, and is given by (1.4). I n  other words as 

The function F ( f )  is here introduced purely for convenience, but most of what 
follows is perfectly valid for any even function P(f;)  which is bounded at 5 = 0. 
Thus the methods of this paper may be used for many possible vortices, not only 
the particular sink vortex with which we are at  present concerned. 

(ii) The outer region 

In  this region, where we expect viscous forces to be unimportant, there is a single 
length scale h, and the stream function should be non-dimensionalized so that 
the condition at  large radius (uniform inflow) is non-dimensional. Here, therefore, 
we use the transformations 

m 6 = 2/72, p = r/h, = m/rm, $ = $/Q, (2.12) 

and in the resulting equations we neglect the viscous terms, which are all multi- 
plied by a factor 1/N. The equations are satisfied if the flow is irrotational, that 
is, if the circulation is uniform and the azimuthal vorticity component is zero. 
Thus 

and $pp - (l /P) $p + &c = 0. (2.13) 

The boundary conditions on $ are: 

(2.14) 

(b )  as p+co ( o Q ~ G ~ )  f i N - 6 ,  (2.15) 

The inner boundary condition on $? is given by the matching condition (2.10) 

$(5, 7 -+ 4 = W ( 5 ,  P + 0). (2.16) 
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Also from (2.10), the matching condition on r is seen to be 

r-+l  as q-+co. (2.17) 

Finally, from (1.3), the limit of I,% as K tends to zero is given by 

3. The small K expansion. Zero-order inner solution 
As indicated in the introduction, a solution to the problem for general values 

of K has not proved feasible, and in order to proceed further we must restrict 
ourselves to conditions of weak swirl and expand in powers of K .  The expansions 
for the inner variables are written 

(3.1) 1 $(K,  E, 7) = $ O ( f ,  7) + K$l(t, 7) + K2$2(f, 7) + 
r(K,E,T) = r o ( f , 7 ) + K r l ( f , q ) + K 2 r 2 ( f , 7 ) +  . a * >  

s . 3  

(the expansion for the outer variable $ ( K , & p )  is exactly similar), where the 
leading term in the expansion for $ is the inner irrotational solution (2.11) 

This leading term suggests the following change of independent inner variables 

5 = f ,  Y = 7 m 3 ,  (3.2) 

in terms of which the equations (2.6) and (2.7) become 

Note that the transformation (3.2) is singular at f = 1, because F(6)  is unbounded 
there, so that the limit y -+ co, corresponding to the limit 7 +- 00 for 0 6 f < 1, 
corresponds to any positive q for f = 1. 

We may now substitute the expansion (3.1) with (x, y) replacing (6, q) and with 

+ 0 -  = -2xy, (3.5) 

into equations (3.3) and (3.4), and equate like powers of K .  The leading terms 
(KO) in (3.3), with the use of ( 3 4 ,  yield the following equation for r0(x, y) 

The boundary conditions on r0(x ,  y) are 

(3.7) 

Fluid Mech. 36 
I roX(O, y) = 0, from (2.8); 

r0(x, y --f 0) - y(function of x), from (2.9); 
r0(x,m) = 1, from (2.17). 

15 
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If we seek a separable solution to (3.6),  we find that it must be of the form xag(y) 
where ,8 is a constant which must be either zero or greater than one for the first 
of conditions (3.7) to be satisfied. But if ,8 is greater than one, no solution of the 
resulting equation for g(y) is both regular at y = 0 and bounded as y + 00. Hence 
the only separable solution to (3 .6)  which can satisfy all the boundary conditions 
is independent of x, and can easily be seen to be 

ro(x, y) = 1 -e+. (3.8) 

Now the dimensionless form of the Burgers vortex (1.2) is 

4 = -2<q,  r = 1-0 

(when k = 2&/h3). Hence (3.6) and (3.8) demonstrate that for asymptotically 
small values of K the flow in our sink vortex is essentially a Burgers vortex with 
a variable radial length scale, say A(z), which is given in terms of S by 

[h(~)/b] '  = l / F ( ~ / h ) .  (3.9) 

The function P(g), given by (2.1 l), increases monotonically from approximately 
unity at 6 = 0 to insnity at .$ = 1, so the radius of our modified Burgers vortex 
shrinks monotonically from approximately S at the stagnation point to zero at  
the sink. This indicates both that the inner non-dimensionalization of 9 2 (i) was 
correct, and that the boundary-layer approximation is valid even in the neigh- 
bourhood of the sink, where it might have been expected to break down. A final 
point to notice is that for non-zero values of K ,  the circulation I' will tend to the 
form of a Burgers vortex as the stagnation point is approached only if all the 
functions r n ( x , y ) ,  n > 0, tend to zero as x tends to zero. Otherwise the flow 
differs from a Burgers vortex, even near the stagnation point. 

4. First-order solution. Radial inflow to the core 

for $il. Using (3.5) and (3.8), we obtain 
We now consider the leading term (A?) in (3.4), which leads to an equation 

This equation can be integrated twice with respect to y, giving 

where El(y) is the exponential integral 

and G(x) ,  H ( x )  are functions of integration. In order for $l to satisfy the boundary 
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condition $l N y(function of x) as y + 0, obtained from (2.9), the function G(x) 
cannot be identically zero, and must be given by 

Now, if the outer flow were described by the undisturbed irrotational stream 
function $, (given in (2.18)), then the functions $1, $2, etc. would all tend to 
zero as y tends to infinity, from the matching condition (2.16). But (4.2) shows 
that $1 cannot tend to zero as y tends to infinity, even if H ( z )  is identically zero, 
because G(x)  is non-zero. Hence the outer flow is modified. Assuming that H ( x )  
is identically zero, by the ‘principle of minimum singularity’ (Van Dyke 1964, 
p. 53 ; this principle can be justified by a consideration of the next term, of order 
1/N, in the boundary-layer expansion), we see from (4.2) that as y tends to 
infinity, $l(x, y) asymptotically becomes a function of x alone, say 

$l@, Y) $I(.) as Y + a. 
The asymptotic form of (4.2) is then 

F’ 
1 6 P ’  

# l = - G = - -  (4.4) 

where a prime denotes differentiation with respect to x. Equation (4.4) must be 
solved subject to the condition that dl(0) = 0, and the solution is 

where F(x ) ,  we recall, is given by (2.11). $l(x) is the value of the stream function 
$ at the edge of the core, to the first order in K ,  and demonstrates that there is 
a non-zero radial mass flow ( ru) at the edge of the core, given by 

ru = v $ ~  = v&(x). 

The function &(x) is plotted in figure 2. It can be seen that the vortex induces 
a radial inflow to the core near the stagnation point, and (by conservation of 
mass) a corresponding outflow nearer the sink. 

From our knowledge of $l(x) we can calculate the first-order modification to 
the outer flow, represented by the stream function g l ( f , p ) .  This function must 
satisfy the equation of irrotationality (2.13), and the boundary conditions 

qlP= = 0 on f = 0 and f = 1 from (2.14); 

g1+o as p+co from (2.15); 

q1 N (l/N) q51(iJ as p -+ 0 from (2.16). 
(4.6) I 

The general solution of (2.13) satisfying the first two of the conditions (4.6) is 

1 “  
$1 = - c AmmnpKl(mnp) sin (mnt), (4.7) 

N m = l  
15-2 
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where K ,  is the first-order modified Bessel function of the second kind, and where 
the constants A ,  are determined from the third of the conditions (4.6) to be 

A ,  = %f $l(t) sin (mng) d<. (4.8) 
0 

These constants have been evaluated on a computer for values of m up to 55; 
the magnitude of A ,  decreases as m increases, and Amfl  has the opposite sign 
to A ,  for all m b 2 (some of the terms are given in table 1) .  It seems, therefore, 
that the series (4.7) converges rapidly. The streamlines of this perturbation to 
the outer flow have been calculated from (4.7), and are plotted in figure 3 (b ) .  They 
must be regarded as superimposed onto the undisturbed streamline pattern of 
figure 3(a) .  The perturbation is very small for small K and large N .  

d4lldX 

FIGURE 2. The radial mass flow at  the edge of the vortex core, as a function of axial 
distance: &(x). The broken line is the approximation to #;(x) obtained from the first two 
terms of an expansion in powers of x. 
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FIGURE 3. Streamlines (a)  of the undisturbed outer flow, and (b) of the 
perturbation to it induced by the radial mass flow of figure 2. 
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m 

1 
2 
3 
4 
5 
6 

50 
... 

Am 

- 3.29 x 10-3 
+ 1-26 x 10-3 
- 5.44 x 10-4 
+ 2.76 x 10-4 
- 1-58 x 10-4 

- 1-88 x 10-7 

- 1.99 x 10-2 

............ 

TABLE 1. Some coefficients of the Fourier series (4.7) 

5. First-order inner solution near the stagnation point 
In order to examine the actual structure of the flow in the core, to the first 

order in K ,  we must first solve equation (4.2) for $l. Then, knowing $1, we can 
in principle also find Fl, for the equation for rl comes from the first-order (K1)  
terms in (3.3), and, using (3.5) and (3.8), it is 

(5.1) 21 r 1UY + Yrlu - xr l x  = &e-v$lz. 
There is no closed form solution for $1 or rl, in general (see the end of this section 
for an exception), and the only way to reduce equations (4.2) or (5.1) to a set of 
ordinary differential equations seems to be to make a formal expansion in powers 
of the axial co-ordinate. We expand in this section about the stagnation point 
( x  = 0) ,  and in the next section about the sink ( x  = 1). 

Formally, therefore, let us expand $l and rl in powers of x. Making use of the 
conditions $lv = $lxx = rlx = 0 on x = 0 (from (2.8), since F'(0) = 0) ,  we may 
write 

In  fact, by symmetry, rl and $12 must both be even functions of x (as F ( x )  is an 
even function), so that all the odd powers disappear from rl and all the even 
powers disappear from $l; this would emerge from the equations if it were not 
assumed. We shall also need the expansion of F(s ) ,  which may be written 

F ( x )  = a,( 1 + alz2 + azx4 + . . .) (5.3) 
so that the method may be generalized beyond the present case, in which, 
from (2.11), 

E 1.905, etc. (5.4) 
" 1  2 "  1 

u O = 2 0 m  uOn,o (2n+ 
x 1.052, a1 = - I; ~ 

The expansion for G(z) ,  from (4.3), is 
G(x) = ( ~ / 8 ~ 0 )  [a1 + ~ x ' ( u Z  - a:) + . . .]. (5.5) 

The procedure now is to substitute (5.2) and (5.5) into (4.2) and (5.1), equate 
like powers of x ,  and solve for each function in turn. The first power of x in (4.2) 
gives the equation for $ll(y), as follows (here a prime denotes differentiation with 
respect to y) : YYL+Y$L-~$~~  = (a1/4aO)Dl(~), (5.6) 
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where Dl(y) = y[El(y) - E1(2y)] - e-y+ &e-2g + 4. 
The next power of x (x3) in (4.2) gives the equation for $l&y), and so on. Similarly 
the leading term in (5.1) gives, for rl0(y): 

YriO f Yr& = 8e-g~11(Y)7 (5.7) 

and the term in x2 gives the equation for F&), and so on. The boundary con- 
ditions on the $ln and rln are 

$ln,l?lm cc y as y-f 0,  and $in, rln -+ 0 as y + m .  

-0.1 1 I I I I I I I 
0 1 2 3 4 5 6 7 

___) 

Y 
FIGURE 4. The leading terms of the stream function expansions near IC = 0 : 

@ l l ( Y ) 9  $dY) and @Bl(Y). 

The solution of (5.6) satisfying these conditions is 

$ll (Y) = (a1/8acI) {[El(Y) - El(2Y)l (QYS + 4Y2 + 3Y) 

- Qe-g (2y2+ 1Oy + 1) +Qe-2” (2y2+ 1 ly + 4) - +I, (5.8) 

and the solution of (5.7) could doubtless also be expressed in closed form, but 
it is more convenient to solve this and subsequent equations numerically (using 
a standard Runge-Kutta technique). The graphs of $ll(y) and are given 
in figure 4 (with a,, a1 given by (5.4)); those of $il(y) and $i3(y), which are of 
interest because the axial velocity w is proportional to -3’(x) $-u from (2.3) and 
(3.2), are given in figure 5, and those of Flo(g) and are given in figure 6. 
Discussion of these and similar results will be postponed to 0 8, but we may notice 
here that Flo(y) is not identically zero, and so the flow does not tend to that of 
a Burgers vortex as x + 0, for non-zero K .  

Finally, it should be noticed that (4.2) does have a self-similar solution for the 
particular case where F ( x )  = c o ( l + c l x ~ ) .  
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FIGURE 5. The functions $il(y), $i3(y) and $il(y). 

0.01 - 

-0.01 - 

I I I I I I I 
0 1 .2 3 4 5 6 7 

__f 

Y 
FIGURE 6. The leading terms of the circulation expansions near x = 0: 

Fo(Y), rlo(Y), FldY) and r,o(Y). 
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In  that case we can write 

where g ( x )  = x"- ' /P(x)  
and f ( y )  satisfies 

(5.9) 

which has the same form as (5.6), and may be solved similarly. If q = 2,  thenf(y) 
is the same as $ll(y) in (5.8) with al/uo replaced by qcoc,. Even in this case, 
however, there is no similarity solution of (5.1) for rl unless q = 0,  which reduces 
the problem to the uninteresting one of a cylindrical vortex. 

6. First-order inner solution near the sink 
The sink ([ = 1 ,q  = 0) is a singular point of the flow field, and in particular of 

the function J'(5). Hence it is improbable that a regular Taylor expansion like 
( 5 . 2 )  can represent the solution there. Other possibilities must be considered, in 
particular, from previous experience with singular expansions (Van Dyke 1964, 
p. 200), logarithmic terms might be expected to appear. In  terms of X = 1 -x 
(4.2) for $1 is 

"(') Dl(y), (6.1) 
F'(Z) 

Y$lzlV +Y$lY - 2?j?l + 2( 1 - 2 )  - $l + (1 - Z) $lz = -___ w3 S F ( X )  

where Dl(y) is given by (5.6), and from (2.11) 

with 

- -  
The leading term on the right-hand side of (6.1) is of order X, so (since P'/F is 

of order l/X) the leading term in the expansion for PI must be of order X2. If we 
assumed a Taylor expansion, starting with the X2 term, and proceed as in § 5 ,  
we discover an inconsistency at  order Z? in (6,1), which can be eliminated only 
by the introduction of logarithms. Let us, therefore, expand $l as follows: 

$1 = S 2 f 1 2 ( y ) f ~ ~ 1 3 ( Y ) + ~ ~ 1 4 ( Y ) + . . .  +10gZ[Z4fL4(y) +2yL5(!/)+**-1* (6*4) 

Substituting (6.2) and (6.4) into (6.1), and equating like powers of 3, we obtain 
a series of equations which yield explicit expressions for the functions flz, f13, 
f14, f15 [for example, the term in Z gives f12 = - gD1(y)], which, with their first 
derivatives, are plotted in figures 7 and 8. 

The dificulty with extending these solutions to higher powers of 5 lies not in the 
complexity of the functions, but in the fact that the function f14 cannot be com- 
puted, since the equation which should determine it (the Z3logX term in (6.1)) 
reduces to the trivial 0 = 0. The subsequent functions f i n  themselves depend on 
f14. It is not surprising that the expansion near the sink cannot generate the 
complete solution for +1, because it takes no account of the boundary con- 
ditions on x = 0 (the reverse process can. work ( §  5 ) ,  because the boundary con- 
ditions at the sink itself (x = 1, y < co) are arbitrary). A determination off14(y), 
and hence of the complete small X expansion, depends on a knowledge of the 
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solution near x = 0, and cannot be attained without it. We know, of course, that 
f14(0) = 0, and we can determinef14(co), by expanding q51(x) in powers of z (the 
value of f l l(m) is approximately 0.125 and is marked on figure 7), but at this 
stage it is impossible to go any further. 

Equation (5.1) for rl can also be expressed in terms of X, and becomes 

grlyy + yrlV + (1 - z )  rlz = - &e-y$,? (6.5) 

rl = X2612(Y)+~3g13(Y)+X4gl4(Y)+. . .+ lOgX[~9L4(Y)+~5g~~(y)+ ...I. (6.6) 

and we can set up an expansion for rl exactly similar to that for $l in (6.4), thus 

0.1 

1 '. 
'. 
\. gl3 

\ 

-0.04 

0 1 2 3 4 5 6 - 
Y 

FIGURE 9. The leading terms of the fist-order circulation expansion near x = 1 : 
9,,(Y), 913(Y), S&,(YL 9,,(Y). 

Substituting (6.6) and (6.4) into (6.5), and equating like powers of 5, we obtain 
a series of equations which determine the functions g in terms of the functionsf: 
for instance, g12 = - +e-yflz. The functions g12, 913, gL4, gL5 are plotted against y 
in figure 9. The function g,, depends on f14, and the indeterminacy in the latter 
affects the expansion for I?, as well as that for 

7. On the second-order solution 
In the last three sections we have investigated in considerable detail the 

solutions of the equations to the first-order in K.  The procedure for extending 
them to higher-orders in K is quite straightforward, but the results are less 
illuminating because in general it is not possible to perform the double integra- 
fion of the equation for $m,  which in the case n = l led to  a complete determination 
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of the function q51(x) describing the radial inflow to the core. Consider the term 
of order K 2  in equation (3.4), which may be written 

F2@) Y$2"""" + F2(4 (Y + 2) $2""" - x[F2(4 $2lwyy 

There is no way of integrating (7.1) so as to leave an equation for the second-order 
inflow function q52(x), but there is nothing to prevent us from expanding $a in 
powers of x (as in (5.2) for @l), and substituting the appropriate series into (7.1) 
as it stands, without prior integration. For instance, if the leading term for $2 

in powers of 2 is ~ $ ~ ~ ( y ) ,  the equation for y?21, from (7.1) and the expansions of 
$5, is 

y&+(y+2)$g1-@;, = *($b 11 $" 11 - - $ I  11 II." 11 ) 
- ( 1/4a, y2) {al y[e-fT,,, + (1 - e-") I?;,] + (1 - e-") r12}. (7.2) 

Equation (7.2) has been integrated numerically, with boundary conditions 
$21(0) = $Ll(co) = 0, and the functions $21(y) and $1;,(y) are plotted in figures 4 
and 5, for comparison with the first-order solutions. The quantity ~ $ b ~ ~ ( c o )  is the 
leading term (in powers of x) of q52(z); the value of $21(co) is approximately 0.0031, 
which is small compared with I$ll(co)I z 0-0757. 

It is interesting to note that if we try to expand $2 near the sink, in powers of Z, 
we are baulked from the start, because the leading term of the expansion turns 
out to be of the form Z4f24(y), where f24 is an unknown function like fi4. Also, 
because we do not know the form of q52(x), we cannot even calculate fi4(co). 

We can similarly look at the K 2  term in (3.3), and obtain an equation for r2 
which may be attacked only by an expansion in powers of x. If the leading term 
of this expansion is Fa0(y), then I'20 satisfies an equation, similar to ( 5 . Q  which 
has been integrated numerically and its solution plotted in figure 6. The leading 
term in the small 5 expansion for F2 has the form Z4g2,(y), which is indeterminate 
because it depends 0nf24(y). The only way to derive further information about the 
second- and higher-order solutions is to continue with the expansions in powers 
of x, a straightforward but laborious process. 

8. Discussion 
The principal results of this paper are twofold. There is first of all the demon- 

stration of how the presence of a narrow viscous vortex in general modifies the 
meridional component of the irrotational flow outside it, inducing a radial inflow 
to (or outflow from) the core, even for small values of the interaction parameter K 
($ 4). That this is consistent with observation of vortices with large values of K 
has already been remarked. The only exceptions to this result are flows in which 
the axial stretching of vortex lines is uniform (i.e. the function F(C) is a constant), 
when the meridional flow is undisturbed even inside the core, and the axial 
vorticity is itself independent of the axial co-ordinate. 

The second achievement of the paper is the development of a method for the 
detailed calculation of the flow within the vortex core, at least near the stagna- 
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tion point, for small values of K.  This was applied to the particular sink-induced 
vortex defined by the function P(6) of (2.11), but it should again be emphasized 
that the method is valid for all even functions F ( f )  which are bounded at f = 0. 
The expansion of the flow variables near the stagnation point (small x = [) is 
unique and completely determined ( $ 9  5 and 7),  while only the leading terms of 
the expansion near the sink (small 5 = 1 - 6 )  can be calculated ( 5  6). The others 
depend on functions which are presumably determined by conditions far from 
the sink. In  any case, the second expansion has little relevance from a practical 
point of view, because it is precisely in the region of small x that the effects of 
finite sink size and of rigid boundaries will be dominant. 

The actual velocity distributions in the vortex core, and hence a physical 
description of the flow, for small K ,  can be derived, both near the stagnation 
point and near the sink, from the functions plotted in figures 4 9 .  The meridional 
flow field of order K is best discussed in terms of the first-order contribution to 
the axial velocity distribution, 

w1 = - (&/h2) m4 $1y 

(from (2.3), (1.5) and (3.2)). Indeed, since the leading terms in each expansion 
of $1, ($i1, $is near the stagnation point, and f12, fl3, near the sink) are one- 
signed, monotonic functions of y, the behaviour of the axial velocity on the axis 
(y = 0) is a good indication of its behaviour elsewhere in the core. Near the stagna- 
tion point we have 

Wily=o = (&/h2)ao{-xl/r;i(O) -X3[a1$;1(0) + $6’;3(O)I +O(x5)}  
E (&/h2) (0 .100~-  0*007x3+ o ( x 5 ) )  (8.1) 

from equations (5.2) to (5.4) and figure 5; and near the sink we have 

W i l y = o  = (&/h2) i{-f;z(O)-3[f:2(0) +f;3(0)I-5210gxf;,,(0) +O(E2)}  
% (&/h2) (0.087 - 0*0385+ O(Z2)} (8.2) 

from equations (6.2) to (6.4) and figure 8. Note that both the zero and the first- 
order contributions t o  the axial velocity on the axis (from (3.5) and either (8.1) 
or (8.2)) increase with x for all x in (0, l), which exemplifies the statement of 
Batchelor (1964, 4 2) that the axial velocity in a vortex increases as the core 
radius A@), given in our case by (3.9), decreases. There is no tendency for the 
axial velocity to become negative anywhere, and hence no tendency for a multi- 
celled vortex to develop. 

One expects the circulation in the vortex core to be intensified when there is 
an inflow, and weakened when there is an outflow, by conservation of angular 
momentum. The first-order circulation field near the stagnation point (see 
figure 6) verifies this expectation: rl0 is positive, corresponding to the negative 
$11 (inflow), and r12 is negative, indicating a smaller intensification as the inflow 
decreases with x is positive). The situation near the sink seems to be anoma- 
lous, since the functions g are mostly positive (figure 9), which implies intensifica- 
tion of the vortex, despite the net outflow in that region. This is presumably a 
consequence of the geometry of the flow, in that the core radius is forced to go 
to zero at the sink. 
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We have no rigorous proof of convergence of the small x expansion, but we 
may note that the two terms given in (8.1) for the axial velocity on the axis 
agree at  x = 1 with the small Z expansion (8.2) to within 7 % (the two expressions 
are equal at x M 0.86). Also, we know that the series obtained by letting y tend to 
infinity in the expansion (5.2) for 41(x, y) converges to q51(x), so that if we assume 
the later functions ($16, etc.) to be as well-behaved as $11 and $13, we have a good 
indication that the full expansion converges. What is more, it seems probable that 
the first two terms of this expansion yield a good representation of the flow field 
for quite large values of x. Not only is there the noted agreement between (8.1) 
and (8.2), but also, if we expand q5i(x) in powers of 5, and plot just the first 
two terms on figure 2, we see acceptable agreement for values of x less than 
about 0-4. 

One unexpected feature of the results is the fact that the function $'zl(y) is 
positive. This indicates that, as K is increased, the inflow near the stagnation 
point is reduced, whereas we would expect the effect to increase as K increases, 
However, the subsequent terms $23, etc., may be negative, which would tend to 
make the inflow more uniform with x, in agreement with observation. 

The important fact about the second-order functions $21 and rz0 is that they 
are significantly smaller in magnitude than the corresponding first-order functions 
(figures 4, 5, 6), which are in turn small compared with the zero-order solution 

This demonstrates that our small K expansion is more than a mere mathematical 
exercise, but is a useful asymptotic expansion of the complete solution, yielding 
valid results for values of K which are not vanishingly small. 
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problem while he was my research supervisor at Cambridge University, and to 
numerous people (especially Dr W. S. Lewellen) for the discussions which even- 
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Department of Mechanics, Johns Hopkins University. I am grateful also to the 
Johns Hopkins Homewood Computing Center for the use of their IBM 7094 
computer, and t o  both the Science Research Council of Great Britain and the 
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